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Hydrogen Sulfide: An Endogenous Mediator
of Resolution of Inflammation and Injury
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Abstract

Significance: Hydrogen sulfide is emerging as an important mediator of many aspects of inflammation, and
perhaps most importantly as a factor promoting the resolution of inflammation and repair of injury. Recent
Advances: In the gastrointestinal tract, H2S has been shown to promote healing of ulcers and the resolution of
mucosal inflammation. On the other hand, suppression of endogenous H2S synthesis impairs mucosal defense
and leads to increased granulocyte infiltration. H2S has been exploited in the design of more effective and safe
anti-inflammatory drugs. Critical Issues: Enteric bacteria can be a significant source of H2S, which could affect
mucosal integrity; indeed, luminal H2S can serve as an alternative to oxygen as a metabolic substrate for
mitochondrial respiration in epithelial cells. Enterocytes and colonocytes thereby represent a ‘‘metabolic barrier’’
to the diffusion of bacteria-derived H2S into the subepithelial space. A compromise of this barrier could result in
modulation of mucosal function and integrity by bacterial H2S. Future Directions: Improvements in methods for
measurement of H2S and development of more selective inhibitors are crucial for gaining a better understanding
of the pathophysiological importance of this mediator. Results from animal studies suggest that H2S-releasing
agents are promising therapeutic agents for many indications, but these compounds need to be assessed in a
clinical setting. Antioxid. Redox Signal. 17, 58–67.

Introduction

While clinical benefits of hydrogen sulfide, at least
in the context of sulfur hot springs, have been espoused

for centuries, it is only in the past 20 years that H2S has been
recognized as an important mediator of physiological pro-
cesses (1, 74). Indeed, as was the case for two other gaseous
mediators (nitric oxide and carbon monoxide), the physio-
logical effects of H2S were overshadowed by the toxicity
associated with high concentrations of this substance (44).
There are many similarities among H2S, carbon monoxide,
and nitric oxide. Enzymes for the synthesis of all three of these
gaseous mediators have been identified and more continue to
be identified, at least in the case of H2S (50). All three medi-
ators have very short half-lives in vivo and produce primarily
beneficial effects at physiological concentrations while con-
tributing to injury at super-physiological concentrations. All
three of these mediators bind to hemoglobin (48, 63) and can
influence activity and/or expression of enzymes responsible
for synthesis of the other gaseous mediators (24, 39, 73–75).
Also, attempts have been made to exploit the beneficial effects
of each of the three gaseous mediators in designing novel
therapeutic agents.

In this article, the ability of H2S to modulate inflammation
is reviewed, with a particular focus on the role of the mediator
in resolution of inflammation. The use of H2S as a therapeutic
modality is also reviewed, along with the potential effects of
bacteria-derived H2S in modulating inflammation and mu-
cosal integrity in the digestive tract and possibly in other
organs.

H2S and Inflammation

One of the first physiological effects of H2S that was
identified was its ability to relax vascular smooth muscle
(73, 75), resulting in vasodilation, a hallmark of inflammation.
Several studies have subsequently highlighted the impor-
tance of H2S in inflammation (27, 30, 54, 56). As was the
case for nitric oxide, the literature on H2S in inflammation
was initially contradictory, but in recent years a general pat-
tern has emerged consistent with this mediator exerting
anti-inflammatory effects, except at high concentrations (56).
Moreover, there are now substantial data supportive of a
role of H2S in promoting resolution of inflammation and
healing of injured tissue. Figure 1 summarizes some of the key
effects of H2S with respect to inflammation and injury. These
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effects include the ability of H2S to inhibit leukocyte adher-
ence to the vascular endothelium and the subsequent ex-
travasation of leukocytes (72). The impact of this effect of H2S
can be seen in various models of inflammation, in which
sulfide salts or H2S donors are able to reduce infiltration of
neutrophils and lymphocytes (17, 72). These effects are likely
due, at least in part, to reduced expression of endothelial and/
or leukocyte adhesion molecule expression following expo-
sure to H2S (18). H2S acts as a tonic down-regulator of leu-
kocyte adherence; thus, inhibition of H2S synthesis leads to
leukocyte adherence (72). Treatment of rats with inhibitors of
H2S synthesis resulted in a marked increase in mucosal in-
flammation (elevated granulocyte levels) and an increase in
susceptibility to injury (18, 58, 59) in the gastrointestinal tract.
This may have been in part due to reduced basal levels of
cyclooxygenase-2 (COX-2) expression and a parallel reduc-
tion of mucosal prostaglandin E2 (PGE2) synthesis (61). COX-2
and PGE2 play important roles in the maintenance of mucosal
defense in the digestive tract, as well as in modulating mu-
cosal inflammation (3, 49, 61, 70, 71).

In addition to modulating leukocyte adhesion and re-
cruitment, H2S can reduce plasma exudation (edema forma-
tion), while inhibitors of H2S augment edema formation
triggered by an inflammatory agent (59). These effects may
contribute to the enhanced edema-reducing effects of H2S-
releasing nonsteroidal anti-inflammatory drugs (NSAIDs) in
rat models of acute (carrageenan) and chronic (Freund’s ad-
juvant) paw swelling (58, 59).

The ability of H2S to reduce inflammation has been dem-
onstrated in a variety of animal models, including kaolin/

carrageenan-induced monoarthritis in rats (2), tobacco-smoke
induced lung inflammation in mice (12, 23), synovitis in rats
(17), ischemia–reperfusion injury in mice (76), and in rat and
mouse models of colitis (19, 56, 61). Whiteman et al. (66)
demonstrated that H2S is present in synovial fluid of patients
with rheumatoid arthritis and osteoarthritis, with levels cor-
relating to disease activity, but the role of H2S in those con-
ditions remains unclear.

H2S was recently shown to inhibit phosphodiesterase ac-
tivity, and this may contribute to anti-inflammatory actions in
some circumstances (via elevation of intracellular cyclic AMP
and/or cyclic GMP) (9). Scavenging of oxidants and perox-
ynitrite may also contribute to the anti-inflammatory activity of
H2S (64, 65). Inhibition of nuclear transcription factor-jB (NF-
jB) has been reported in several models (27, 28, 38), and con-
sistent with this, H2S reduces pro-inflammatory cytokine,
chemokine, and enzyme (e.g., inducible nitric oxide synthase
[iNOS]) expression (17, 19, 51, 67). In addition, the antioxidant
activity of H2S can be mediated by up-regulation of enzymes
such as superoxide dismutase, glutathione peroxase dis-
mutase, and thioredoxin as assessed in rats subjected to intes-
tinal ischemia-reperfusion injury (31) or in brain endothelial
cells under methionine-induced oxidative stress in vitro (53) or
even by inhibition of NADPH oxidase activity, as in the case of
osteoblasts exposed to hydrogen peroxide in vitro (69). With
many of these putative mechanisms of action of H2S, it is un-
clear if the concentrations required for such actions are
achieved in a physiological setting. Difficulties in measuring
H2S levels in vivo further complicate the assessment of the
relative significance of these mechanisms in various scenarios.

FIG. 1. Anti-inflammatory
effects of H2S. This figure
illustrates some of the key
ways in which H2S can re-
duce inflammation. H2S
suppresses leukocyte adher-
ence to the vascular endo-
thelium and migration of
leukocytes into the sub-
endothelial space, as well as
reducing plasma exudation.
H2S has been shown to re-
duce expression of many
pro-inflammatory cytokines,
chemokines, and enzymes,
most likely related to its
ability to suppress activa-
tion of nuclear transcription
factor-jB (NF-jB). H2S is also
a potent anti-oxidant and can
induce apoptosis in neutro-
phils (which can lead to
their phagocytosis by mac-
rophages). Promotion of tis-
sue repair by H2S is likely
mediated in part by its va-
sodilatory actions and en-
hancement of cyclooxygenase-2 (COX-2) expression and through promotion of angiogenesis. Inhibition of
phosphodiesterases (PDE) by H2S leads to elevated cyclic AMP and/or cyclic GMP levels, which can contribute to its anti-
inflammatory effects. H2S exhibits anti-nociceptive effects in the viscera, likely due, at least in part, to activation of ATP-
sensitive potassium channels. In many cells in the body, and in particular in gastrointestinal epithelial cells, H2S can act as an
energy source (generating ATP), substituting for oxygen in mitochondrial respiration. This appears to contribute significantly
to protection and repair of tissue injury.
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H2S has been shown to exert anti-nociceptive effects in
some (15, 18, 19, 62), but not all (37) visceral pain studies.
The discrepancies may be related to the different methods
for measuring pain or to different doses or routes of ad-
ministration of the H2S-releasing agents. In a recent study
performed in our laboratory, we found that two H2S-
generating substances (NaHS and Lawesson’s reagent)
dose-dependently reduced gastric distention–induced vis-
ceral pain (measured through cardio-autonomic responses)
in the rat in an ATP-sensitive potassium channel–dependent
manner (62). The ability of H2S to exert peripheral anti-
nociceptive effects has also been demonstrated in some, but
not all studies. While anti-nociceptive effects of H2S were
reported by Cunha et al. (13) in a model of peripheral pain
induced by bacterial endotoxin and by Ekundi-Valentim
et al. (17) in rats with carrageenan-induced knee joint sy-
novitis (see Fig. 2), Andruski et al. (2) observed a significant
inhibition of leukocyte recruitment by an H2S donor in a rat
model of monoarthritis, but no significant effect on pain
sensitivity.

H2S and Resolution of Inflammation/Injury

With the ability to inhibit so many elements of acute
inflammation, it is not surprising that H2S contributes
significantly to the resolution of inflammation and injury.
Inflammatory reactions are driven largely by soluble, pro-
inflammatory mediators, such as leukotrienes, histamine,
bradykinin, platelet-activating factor, and interleukin (IL)-1,
to name just a few (49). Counteracting the effects of these
pro-inflammatory mediators are a variety of soluble me-
diators that down-regulate inflammation, including lipox-
ins, certain prostaglandins, annexin-1 (AnxA-1), and IL-10
(49). An over-production of pro-inflammatory mediators or
an under-production of anti-inflammatory mediators can
lead to progression from acute to chronic inflammation.
Resolution of inflammation occurs through removal of the
triggers of the inflammatory response (e.g., a foreign body
or organism), inhibition of the recruitment of neutrophils
to the site of injury, and induction of apoptosis of the
infiltrated neutrophils and their subsequent clearance by
macrophages (Fig. 3). Macrophages undergo a phenotype
shift from pro-inflammatory to anti-inflammatory during
this process.

There is emerging evidence that H2S may participate in
several stages of the process of resolution of inflammation. As
already mentioned, H2S can reduce leukocyte adherence to
the vascular endothelium and leukocyte migration to sites of
injury (72). H2S can also induce neutrophil apoptosis (34),
and there is recent evidence that it can trigger significant
changes in macrophage function consistent with a shift to a
pro-resolution phenotype (16). Specifically, exposure of mu-
rine bone marrow–derived macrophages to H2S resulted in a
significant enhancement of phagocytosis of bacteria. H2S
also suppressed endotoxin-induced tumor necrosis factor a
(TNFa) production by macrophages, while enhancing che-
motaxis. In vivo, in a mouse peritonitis model, H2S signifi-
cantly reduced granulocyte infiltration while maintaining
macrophage numbers (16).

H2S also appears to interact with other pro-resolution me-
diators. H2S modulates COX-2 expression in the gastrointesti-
nal tract, which plays a crucial role in resolution of
inflammation and injury (3, 49, 56, 61, 70, 71). Recently reported
work from Brancaleone et al. (8) demonstrates an important
interaction between H2S and AnxA-1. AnxA-1 is a well-char-
acterized anti-inflammatory and pro-resolution mediator that
has also been shown to contribute to gastrointestinal integrity
and repair (36, 41). Brancaleone et al. (8) observed that an H2S
donor (NaHS, 10–100 lM) elicited intense mobilization of
AnxA-1 from the cytosol to the membrane of human neutro-
phils. It also markedly suppressed IL-1–induced leukocyte
adhesion and emigration in mesenteric venules of wild type,
but not AnxA1-deficient mice. There were also effects of en-
dogenous AnxA1 on H2S synthesis. Thus, mice deficient of
AnxA1 displayed marked up-regulation of cystathionine b-
synthase (CBS) and cystathionine c-lyase (CSE) in a variety of
tissues as compared with wild-type mice. Moreover, H2S could
down-regulate other inflammatory pathways in macrophages
from wild-type mice (i.e., significant suppression of iNOS and
COX-2 expression in lipopolysaccharide-stimulated bone
marrow-derived macrophages) but not in macrophages ob-
tained from AnxA1-deficient mice. The authors concluded that
these data demonstrate interlinks between the H2S and AnxA1

FIG. 2. Anti-nociceptive and anti-inflammatory effects of
hydrogen sulfide in experimental (carrageenan-induced)
synovitis in rats. (A) Pain responses and (B) joint swelling.
Pretreatment with an H2S donor (Lawesson’s reagent;
3.6 lmol intra-articularly), markedly reduced secondary tac-
tile allodynia, while an inhibitor of H2S synthesis (D/L-
propargylglycine [PAG], 53 lmol intra-articularly) had no
significant effect. Indomethacin (6 mg/kg intraperitoneally)
was used as a positive control. *p < 0.05, **p < 0.01, ***p < 0.001
versus the vehicle-treated group. Adapted from previously
published data (17).
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pathways that are likely very important in the resolution of
inflammation.

The importance of H2S in promoting resolution of inflam-
mation and repair of injury has been clearly demonstrated in
animal models of gastrointestinal inflammation and ulcera-
tion. In rat and mouse models of gastric ulcer, administration
of H2S-generating agents has been shown to significantly ac-
celerate ulcer healing, while inhibition of endogenous H2S
synthesis was associated with impaired ulcer healing (58, 60).
Administration of the precursor for H2S synthesis, L-cysteine,
promoted ulcer healing in the rat at doses that did not affect
tissue glutathione levels (60). One of the significant limitations
to the use of NSAIDs for treatment of inflammatory condi-
tions is their ability to retard the healing of gastrointestinal
ulcers. As shown in Fig. 3, this can be shown in a mouse model
of gastric ulceration in which NSAIDs such as naproxen and
celecoxib significantly impaired ulcer healing. However, an
H2S-releasing derivative of naproxen (ATB-346) not only did
not impair ulcer healing, it significantly accelerated the heal-
ing process (58); thus, enhanced repair occurred despite
marked suppression of COX-2 activity in the damaged tissue.
Similar effects have been demonstrated previously in the rat
with an H2S-releasing derivative of mesalamine (19, 56). The
mechanism underlying the enhancement of ulcer healing by
H2S is not clear, but may be related, at least in part, to its
vasodilatory activity, its ability to enhance COX-2 expression,
and its reported ability to promote angiogenesis (40).

Further evidence for an important role of H2S in resolution
of inflammation and repair of injury comes from studies of
experimental colitis in rodents. When the colonic mucosa is
inflamed, there is a marked increase in the capacity of the
tissue to produce H2S (20, 58). Most of the H2S in this context
is produced via CBS, as is the case in non-inflamed colon (35),
but synthesis via CSE is also significant (61). Preliminary data
suggested that there is also a marked elevation of colonic H2S
synthesis via other enzymatic pathways (i.e., non-CSE and
non-CBS) when the colon is inflamed. Inhibition of H2S syn-
thesis once colitis is established led to a marked worsening of
the inflammation, with perforation of the bowel wall and
death occurring in most animals within a few days (61). In the

rats that survived a week-long treatment with an inhibitor of
H2S synthesis, the colonic damage was significantly worse
than that observed in vehicle-treated controls. Interestingly,
there was a marked thickening of the smooth muscle in the
colon in the rats treated with an inhibitor of H2S synthesis (61).

Additional evidence that H2S could promote resolution of
colitis came from studies in which H2S donors were admin-
istered to rats or mice with colitis (19, 61, 68). Irrespective of
the H2S donor used, a significant reduction of the severity of
colitis was observed, with a marked inhibition of granulocyte
infiltration into the colonic tissue (19, 61). The latter obser-
vation is important, since much of the tissue injury associated
with colitis is likely produced by infiltrating granulocytes. In
these studies, the H2S-generating agents significantly reduced
colonic expression of TNFa (protein and mRNA); in other
studies, they also reduced expression of interferon-c, IL-1b,
and iNOS (19, 61, 68). Consistent with these findings, allyl
trisulfide, a garlic-derived substance that releases H2S (7), was
shown to suppress TNFa expression and NF-jB activation in
colonic biopsies from patients with ulcerative colitis (6).

H2S in Novel Therapeutics

The ability of H2S to enhance gastrointestinal resistance to
injury, to promote repair of damaged tissue, and to reduce
mucosal inflammation make it an attractive substance to ex-
ploit in designing novel drugs for treatment of gastrointesti-
nal injury and inflammation (10, 54). We have synthesized
and characterized the effects of an H2S-releasing derivative of
mesalamine in animal models of colitis (mesalamine is the
first-line therapy for colitis) and have observed a significant
enhancement of anti-inflammatory activity as compared to
the parent drug (19, 56). H2S-releasing derivatives of several
NSAIDs have been assessed in animal models, with the con-
sistent finding of greatly reduced gastrointestinal toxicity and,
in some cases, enhanced anti-inflammatory activity (30, 54, 58,
59). An H2S-releasing derivative of naproxen has been par-
ticularly well characterized. The anti-inflammatory activity of
the compound, called ATB-346, is comparable to that of the
parent drug (58). However, even at exceptionally high doses

FIG. 3. Resolution of inflammation.
Inflammatory reactions to injury or in-
fection are largely coordinated by soluble
mediators (pro-inflammatory and anti-
inflammatory). In the early stages of
an inflammatory reaction, the pro-
inflammatory mediators predominate, re-
sulting in the recruitment of inflammatory
cells (such as neutrophils) and platelets to
the site of injury/infection. Monocyte re-
cruitment follows, with the subsequent
transformation to macrophages, which are
crucial for tissue repair. In part driven by
anti-inflammatory mediators such as H2S,
the infiltrated neutrophils begin to undergo
apoptosis, which causes macrophages to
shift their phenotype from pro-inflamma-
tory to anti-inflammatory. Engulfment of
apoptotic neutrophils (polymorphonuclear
leukocytes [PMN]) by macrophages is a
key event in resolution of inflammation.

H2S AND RESOLUTION OF INFLAMMATION 61

http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2011.4351&iName=master.img-002.jpg&w=312&h=211


(100 times the human dose on a per kilogram basis), ATB-346
caused negligible gastric damage in healthy rats. While im-
pressive, studies performed in healthy rodents may not serve
as a good predictor of how an anti-inflammatory drug will
behave in humans with diseases such as osteoarthritis and
rheumatoid arthritis alongside other co-morbidities for gas-
trointestinal damage. To more rigorously assess the gastric
safety of ATB-346, studies were performed in rats in which
gastric mucosal defense was significantly compromised (58).
This was achieved by interfering with the production of me-
diators known to contribute to mucosal defense (e.g., nitric
oxide, hydrogen sulfide), co-administering another drug that
can damage the stomach (e.g., low-dose aspirin, frequently
co-administered with NSAIDs in a clinical setting), blocking
receptors believed to contribute to mucosal defense (e.g.,
glibenclamide to block ATP-sensitive K + channels), or ablat-
ing sensory afferent nerves (via neonatal administration of
capsaicin), which play a crucial role in mucosal responses to
luminal irritants (55). As illustrated in Fig. 4, naproxen pro-
duced a low level of damage in control rats at the dose tested
(60 lmol/kg). However, with each approach to compromis-
ing mucosal defense, the extent of injury induced by naproxen
was significantly increased (two- to sixfold). In contrast, ATB-
346 at an equimolar dose did not produce significant damage
in controls or in mucosal defense–compromised animals.
Particularly interesting is the observation that ATB-346 was
still gastric safe in rats pretreated with glibenclamide. Many
actions of H2S have been attributed to activation of ATP-
sensitive K + channels (14, 62, 74). This observation suggests
that the mechanism underlying the gastric tolerability of ATB-
346 is unrelated to activation of ATP-sensitive K + channels. It
is also noteworthy that ATB-346 suppressed gastric prosta-
glandin synthesis as effectively as equimolar doses of na-
proxen (58). Thus, the compound can compensate for the
reduced mucosal resistance to injury that occurs when pros-
taglandin synthesis is markedly reduced (presumably be-
cause H2S can exert many of the same effects, in terms of
mucosal defense, as prostaglandins do).

Another major clinical concern with respect to the use of
NSAIDs is their ability to interfere with the healing of ulcers
(55). This effect is likely related to suppression of COX-2
activity by the NSAIDs. COX-2–derived prostaglandin syn-
thesis by cells at the ulcer margin is critically important for re-

epithelialization and angiogenesis (55). As shown in Fig. 5,
naproxen and celecoxib (nonselective COX inhibitor and se-
lective COX-2 inhibitor, respectively) each significantly im-
paired the healing of gastric ulcers in mice when administered
twice daily over a 4-day period. In sharp contrast, the H2S-
releasing derivative of naproxen (ATB-346) significantly accel-
erated the healing of pre-existing gastric ulcers (58). This is
consistent with previous reports that L-cysteine and H2S-
generating agents could accelerate experimental ulcer healing,
while inhibitors of H2S synthesis impaired ulcer healing (56, 60).
The beneficial effects of H2S on ulcer healing may be attribut-
able to the stimulatory effects of H2S on angiogenesis (40).

From a clinical perspective, the main focus in terms of the
gastrointestinal toxicity of NSAIDs is the stomach and

FIG. 4. Acute damage to the
stomach in rats treated with na-
proxen or an equimolar dose
(60 lmol/kg) of an H2S-releasing
derivative of naproxen (ATB-
346). In rats pretreated with vehi-
cle, naproxen induced a low level
of gastric damage, while no dam-
age was observed in rats treated
with ATB-346 (n ‡ 5 per group).
Pretreatment with low-dose aspi-
rin (10 mg/kg; ASA), an inhibitor
of nitric oxide synthase (L-NAME;
15 mg/kg), ablation with capsaicin
of sensory afferent nerves, pre-

treatment with an inhibitor of cystathionine b-synthase (b-cyanoalanine [BCA], 50 mg/kg) or an antagonist of ATP-sensitive
K + channels (glibenclamide; 10 mg/kg) each significantly increased the severity of naproxen-induced gastric damage
(*p < 0.05 vs. corresponding vehicle-treated group). However, ATB-346 did not produce significant gastric damage in any of
the rats receiving these treatments (dotted line). Adapted from previously published data (55).

FIG. 5. Experimental gastric ulcer healing with ATB-346,
an H2S-releasing derivative of naproxen. The extent of
healing of gastric ulcers in mice treated twice daily over a 4-
day period with one of three NSAIDs or vehicle was exam-
ined. Gastric ulcers were induced by brief serosal application
of acetic acid (55). Beginning 3 days later, the mice began
treatment with naproxen, ATB-346 (each at 60 lmol/kg),
celecoxib (at 30 lmol/kg), or vehicle. The ulcer area at the
end of the treatment period was compared to that in mice
euthanized 3 days after ulcer induction (no drug treatment),
and the ‘‘percent ulcer healing’’ was calculated. *p < 0.05
versus the vehicle-treated group (n ‡ 5 per group). Adapted
from previously published data (55).

62 WALLACE ET AL.

http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2011.4351&iName=master.img-003.png&w=340&h=132
http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2011.4351&iName=master.img-004.png&w=184&h=155


proximal duodenum. This is largely due to the relative ease of
endoscopically viewing these regions. However, it is becom-
ing increasingly clear that NSAIDs frequently produce sig-
nificant injury in the small intestine. Indeed, the jejunum and
ileum may be the major sites of NSAID-induced bleeding (55,
57). Damage to these regions induced by NSAIDs is deter-
mined by a number of factors, but most important is the en-
terohepatic circulation of the NSAIDs, leading to repeated
exposure of the epithelium to the NSAIDs and bile, and also to
marked changes in the numbers and type of bacteria in the
small intestine (57). The H2S-releasing derivative of naproxen
(ATB-346), when given twice daily to rats for 5 days, did not
produce detectable small intestinal damage (58). This was in
marked contrast to the parent drug, naproxen, which elicited
widespread ulceration and bleeding in the small intestine.

Bacteria-Derived H2S: A Modulator of Inflammation
or Mucosal Function?

Many of the species of bacteria residing in the human
gastrointestinal tract are capable of producing H2S. Some
early studies suggested that the concentrations of H2S in the
lumen of the gut were extremely high relative to levels that
occur in the body (32, 33). Largely based on these data, and
observations of adverse effects of such concentrations of H2S
on colonocyte function (5), roles for H2S in the pathogenesis of
inflammatory bowel disease and colon cancer were suggested
(4, 45, 46). However, this hypothesis has been challenged (25,
26, 38, 42), as has the notion that there are millimolar con-
centrations of free H2S in the lumen of the gut (27, 28, 38, 42,
43). Most of the H2S that is produced in the lumen of the
intestine is bound to fecal material and therefore not available
to diffuse through the epithelium. The H2S that is available,
likely in micromolar concentrations, is absorbed and rapidly
metabolized (51). Indeed, efficient detoxification occurs via a
number of enzymes present in the mucosa, and no impair-
ment of these detoxification systems has been detected in
patients with ulcerative colitis or Crohn’s disease (42). Based
on studies utilizing a rat model of colitis (dextran sodium
sulfate), Furne et al. (21) concluded that ‘‘excessive H2S pro-
duction’’ did not contribute to tissue injury.

Even before reaching the mucosa, however, there is sub-
stantial metabolism of H2S in the mitochondria of enterocytes
and colonocytes. Virtually all H2S that crosses the apical
membrane of enterocytes and colonocytes is rapidly oxidized
to thiosulfate (22, 28). This is accomplished mainly by a mi-
tochondrial enzyme, sulfide quinone reductase, which rap-
idly consumes H2S, thereby providing energy to the cell and
keeping H2S concentrations at nontoxic levels (26) (Fig. 6).
This ancestral capacity, predating photosynthesis, is common
to organisms living in low-light, low-oxygen conditions (52).
As mentioned above, efficient detoxification also occurs via a
number of mucosal enzymes (52). The epithelium could
therefore be viewed not only as a physical barrier, protecting
organisms from potentially harmful substances in the lumen
of the digestive tract, but also a metabolic barrier providing
additional protection. When there is an intact, healthy epi-
thelium, luminally produced H2S likely has little, if any, effect
on mucosal function. However, in cases in which the epithe-
lium is dysfunctional or damaged, it remains possible that
H2S produced by bacteria could exert significant effects on
several aspects of mucosal function, including secretion (via

effects on enteric neurons) (47), pain sensation (14), blood flow
(18, 63), and smooth muscle contractility (29, 63). Indeed, an
impaired colonic ‘‘barrier’’ to diffusion of H2S from the lumen
may explain in part the marked beneficial effects of H2S
donors, when administered by enema, in models of colitis
(19, 61).

As already reviewed, colonic production of H2S is mark-
edly increased when the mucosa is inflamed (20, 61). Because
measurements of H2S in this context are generally performed
in vitro, and because of the capacity of some colonic bacteria to
produce H2S, we performed a series of studies to determine if
some portion of what we measure as ‘‘colonic H2S synthesis’’
is actually bacterial H2S synthesis (20). These studies involved
the use of germ-free mice and mice colonized with Altered
Schaedler flora. There was no difference in colonic H2S syn-
thesis between these two groups of mice, indicating that any
bacterial contribution (in the colonized mice) was negligible
(Fig. 7). We also measured tissue and fecal H2S production
from healthy mice and mice with colitis induced by trini-
trobenzene sulfonic acid. Colonic H2S synthesis was mark-
edly increased in parallel with the severity of colitis and the
extent of granulocyte infiltration (Fig. 8), but neutrophils (the
main infiltrating granulocytes) were not a significant source of
H2S synthesis. Taken together, these studies clearly demon-
strated that the H2S synthesis measured using the in vitro zinc-
trapping method was derived from the colonic tissue itself,
rather than from any bacteria adherent to the tissue samples.
On the other hand, certain bacteria may be able to modulate
colonic H2S synthesis. For example, butyrate, which is pro-
duced by Bifidobacteria and Faecalibacterium prausnitzii, has
been shown to regulate H2S production, at least in trans-
formed colonocytes (WiDr cells) (11). Butyrate increased ex-
pression of CBS and CSE, the major enzymatic sources of H2S
in these cells.

FIG. 6. The colonic epithelium as a metabolic barrier to
bacteria-derived H2S. Many species of bacteria can produce
H2S but most is bound to fecal material. The small amount
that is free to diffuse across the epithelium is rapidly me-
tabolized, primarily via mitochondrial sulfide quinone re-
ductase (SQR) to thiosulfate, generating adenosine
triphosphate (ATP) in the process. Thus, H2S is an important
energy source for colonocytes. When the epithelium is
damaged or dysfunctional, more H2S may escape metabo-
lism and reach the subepithelial space, where it can affect
many functions, including epithelial secretion, blood flow,
smooth muscle contractility, and mucosal defense.
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Conclusions and Future Directions

The contribution of H2S as a modulator of inflammation is
becoming more clear, but studies of this gaseous mediator
continue to be limited by the lack of highly selective inhibitors
of its synthesis and simple methods for measuring its pro-
duction in vivo. Pathways of synthesis of H2S other than via
CSE and CBS are becoming evident and represent an impor-
tant area for future research.

Novel therapeutic agents that release H2S and exhibit sig-
nificant anti-inflammatory and/or gastrointestinal mucosal
protective effects look promising in preclinical studies. The
mechanisms through which H2S increases resistance to mu-
cosal injury, promotes repair of injury, and accelerates reso-
lution of inflammation remain incompletely understood.
Evaluation of H2S-releasing drugs in a clinical setting will
provide insight as to whether or not the exploitation of H2S as
a therapeutic agent will live up to the promise.

The ability of many enteric bacteria to produce H2S and the
possibility that bacterially derived H2S could affect mucosal
function are intriguing. The intestinal epithelium appears to

FIG. 7. Colonic hydrogen sulfide synthesis, as measured
by the zinc acetate–trapping method, does not include
significant ‘‘contamination’’ by bacterial H2S synthesis.
Mice that were colonized by Altered Schaedler Flora were
compared with mice that were raised germ-free. There was
considerable variation from mouse to mouse in terms of
colonic H2S synthesis, but there was no significant difference
between the colonized and germ-free mice. Adapted from
previously published data (20).

FIG. 8. Colonic hydrogen sulfide synthesis (as measured by the zinc acetate–trapping method) is markedly up-regulated
during injury/inflammation, and there is negligible bacterial contribution. Colitis was induced via intrarectal adminis-
tration of trinitrobenzene sulfonic acid (20). (A) Colonic myeloperoxidase (MPO) activity, a biochemical marker of granu-
locyte infiltration. In both strains of mice examined, MPO activity increased with the severity of the colitis. (B) Colonic H2S
synthesis, which similarly increased in parallel with the severity of colitis. (C) In contrast, fecal hydrogen sulfide synthesis did
not differ between healthy mice and mice with mild or severe colitis, suggesting negligible contribution of bacteria to what
was measured as ‘‘colonic’’ H2S. (D) There was a strong correlation between the extent of inflammation (MPO activity) and
colonic H2S synthesis. There was no such correlation between fecal H2S synthesis and colonic MPO activity. **p < 0.01 versus
the corresponding control (cont) group. Adapted from previously published data (20).
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act as a metabolic barrier to diffusion of significant concentra-
tions of H2S into the mucosa, at least when the epithelium is
healthy. On the other hand, H2S is an important metabolic fuel
for enterocytes. Given the widespread actions that H2S can exert
on various cell types in the subepithelial compartment (e.g.,
blood vessels, enteric nerves, smooth muscle cells, resident and
infiltrating immunocytes), it is important to determine the extent
to which bacterial H2S can ‘‘escape’’ epithelial and mucosal in-
activation in certain circumstances and disease conditions.
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